Sindbis virus RNA polymerase is degraded by the N-end rule pathway.

نویسندگان

  • R J de Groot
  • T Rümenapf
  • R J Kuhn
  • E G Strauss
  • J H Strauss
چکیده

Upon infection of animal cells by Sindbis virus, four nonstructural (ns) proteins, termed nsP1-4 in order from 5' to 3' in the genome, are produced by posttranslational cleavage of a polyprotein. nsP4 is believed to function as the viral RNA polymerase and is short-lived in infected cells. We show here that nsP4 produced in reticulocyte lysates is degraded by the N-end rule pathway, one ubiquitin-dependent proteolytic pathway. When the N-terminal residue of nsP4 is changed by mutagenesis, the metabolic stabilities of the mutant nsP4s follow the N-end rule, in that the half-life of nsP4 bearing different N-terminal residues decreases in the order Met greater than Ala greater than Tyr greater than or equal to Phe greater than Agr. Addition of dipeptides Tyr-Ala, Trp-Ala, or Phe-Ala to the translation mixture inhibits degradation of Tyr-nsP4 and Phe-nsP4, but not of Arg-nsP4. Conversely, dipeptides His-Ala, Arg-Ala, and Lys-Ala inhibit the degradation of Arg-nsP4 but not of Tyr-nsP4 or Phe-nsP4. We found that there is no lysine in the first 43 residues of nsP4 that is required for its degradation, indicating that a more distal lysine functions as the ubiquitin acceptor. Strict control of nsP4 concentration appears to be an important aspect of the virus life cycle, since the concentration of nsP4 in infected cells is regulated at three levels: translation of nsP4 requires read-through of an opal termination codon such that it is underproduced; differential processing by the virus-encoded proteinase results in temporal regulation of nsP4; and nsP4 itself is a short-lived protein degraded by the ubiquitin-dependent N-end rule pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons.

A subset of proteins targeted by the N-end rule pathway bear degradation signals called N-degrons, whose determinants include destabilizing N-terminal residues. Our previous work identified mouse UBR1 and UBR2 as E3 ubiquitin ligases that recognize N-degrons. Such E3s are called N-recognins. We report here that while double-mutant UBR1(-/-) UBR2(-/-) mice die as early embryos, the rescued UBR1(...

متن کامل

Construction of a Minigenome Rescue System for Measles Virus, AIK-c Strain

Background:In the recent decade, the reverse genetics method has been broadly used for rescue of negative-stranded RNA viruses from cDNA or viral minigenomes. This technique has been applied to study different steps in virus replication and virus-host interactions. Reverse genetics could also be implemented for design of new vaccines. The T7 RNA polymerase activity as well as virus (nucleocapsi...

متن کامل

Modification of the 5' terminus of Sindbis virus genomic RNA allows nsP4 RNA polymerases with nonaromatic amino acids at the N terminus to function in RNA replication.

We have previously shown that Sindbis virus RNA polymerase requires an N-terminal aromatic amino acid or histidine for wild-type or pseudo-wild-type function; mutant viruses with a nonaromatic amino acid at the N terminus of the polymerase, but which are otherwise wild type, are unable to produce progeny viruses and will not form a plaque at any temperature tested. We now show that such mutant ...

متن کامل

The ubiquitin-proteasome system regulates the accumulation of Turnip yellow mosaic virus RNA-dependent RNA polymerase during viral infection.

Replication of positive-strand RNA viruses, the largest group of plant viruses, is initiated by viral RNA-dependent RNA polymerase (RdRp). Given its essential function in viral replication, understanding the regulation of RdRp is of great importance. Here, we show that Turnip yellow mosaic virus (TYMV) RdRp (termed 66K) is degraded by the proteasome at late time points during viral infection an...

متن کامل

Wolbachia elevates host methyltransferase expression to block an RNA virus early during infection

Wolbachia pipientis is an intracellular endosymbiont known to confer host resistance against RNA viruses in insects. However, the causal mechanism underlying this antiviral defense remains poorly understood. To this end, we have established a robust arthropod model system to study the tripartite interaction involving Sindbis virus and Wolbachia strain wMel within its native host, Drosophila mel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 88 20  شماره 

صفحات  -

تاریخ انتشار 1991